Evolution of the gene network underlying gonadogenesis in turtles with temperature-dependent and genotypic sex determination.

نویسنده

  • Nicole Valenzuela
چکیده

The evolution of sex determination has long fascinated biologists, as it has paramount consequences for the evolution of a multitude of traits, from sex allocation to speciation and extinction. Explaining the diversity of sex-determining systems found in vertebrates (genotypic or GSD and temperature-dependent or TSD) requires a comprehensive and integrative examination from both a functional and an evolutionary perspective. Particularly revealing is the examination of the gene network that regulates gonadogenesis. Here, I review some advances in this field and propose some additional hypotheses about the composition of the gene network underlying sexual development, the functional links among some of its elements and their evolution in turtles. I focus on several pending questions about: (1) What renders TSD systems thermo-sensitive? (2) Is there one developmentally conserved or multiple TSD mechanisms? (3) Have evolutionarily derived GSD species lost all ancestral thermal-sensitivity? New data are presented on embryonic expression of Dax1 (the dosage-sensitive sex-reversal adrenal hypoplasia congenital on the X chromosome gene in the turtles Chrysemys picta (TSD) and Apalone mutica (GSD). No differential Dax1 expression was detected in C. picta at any of the stages examined, consistent with reports on two other TSD turtles and alligators. Notably, significantly higher Dax1 expression was found at 30°C than at 25°C at stage 15 in A. mutica (GSD), likely caused by Wt1's identical expression pattern previously reported. Because Sf1 is an immediate downstream target of Dax1 and its expression is not affected by temperature, it is proposed that Sf1 renders Dax1's differential signal ineffective to induce biased sex ratios in A. mutica, as previously proposed for Wt1's thermosensitive expression. Thus, it is hypothesized that Sf1 plays a major role in the lack of response of sex ratio to temperature of A. mutica, and may function as a sex-determining gene in this GSD species. These and previous data permit formulating several mechanistic hypotheses: (1) the postulation of Wt1 as a candidate thermal master switch alone, or in combination with Sf1, in the TSD turtle C. picta; (2) the proposition of Sf1 as a sex-determining gene in the GSD turtle A. mutica; and (3) the hypothesis that differing patterns of gene expression among TSD taxa reflect multiple traits from a developmental perspective. Moreover, the recent finding of relic differential Wt1 expression in A. mutica and the results for Dax1 in this species provide empirical evidence that GSD taxa can harbor thermal sensitivity at the level of gene expression, potentially co-optable during TSD evolution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relic thermosensitive gene expression in a turtle with genotypic sex determination.

The evolution of sex determination remains one of the most fascinating enigmas in biology. Transitions between genotypic sex determination (GSD) and temperature-dependent sex determination (TSD) have occurred multiple times during vertebrate evolution, however, the molecular basis and consequences of these transitions in closely related taxa remain unresolved. Here I address a critical question...

متن کامل

Transcriptomic responses to environmental temperature by turtles with temperature-dependent and genotypic sex determination assessed by RNAseq inform the genetic architecture of embryonic gonadal development

Vertebrate sexual fate is decided primarily by the individual's genotype (GSD), by the environmental temperature during development (TSD), or both. Turtles exhibit TSD and GSD, making them ideal to study the evolution of sex determination. Here we analyze temperature-specific gonadal transcriptomes (RNA-sequencing validated by qPCR) of painted turtles (Chrysemys picta TSD) before and during the...

متن کامل

Multivariate expression analysis of the gene network underlying sexual development in turtle embryos with temperature-dependent and genotypic sex determination.

Sexual development has long been the target of study and despite great advances in our understanding of the composition and regulation of the gene network underlying gonadogenesis, our knowledge remains incomplete. Of particular interest is the relative role that the environment and the genome play in directing gonadal formation, especially the effect of environmental temperature in directing t...

متن کامل

Comparative gene expression of steroidogenic factor 1 in Chrysemys picta and Apalone mutica turtles with temperature-dependent and genotypic sex determination.

Characterizing the molecular network underlying temperature-dependent (TSD) and genotypic (GSD) sex determination, including patterns across closely related taxa, is crucial to elucidate the still enigmatic evolution of sex determining mechanisms in vertebrates. Here we examined the expression of an important gene for sexual differentiation common to both systems, Sf1, at male- and female-produ...

متن کامل

Response of candidate sex-determining genes to changes in temperature reveals their involvement in the molecular network underlying temperature-dependent sex determination.

Gonadogenesis, the process of forming an ovary or a testis from a bipotential gonad, is critical to the development of sexually reproducing adults. Although the molecular pathway underlying vertebrate gonadogenesis is well characterized in organisms exhibiting genotypic sex determination, it is less well understood in vertebrates whose sex is determined by environmental factors. We examine the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Integrative and comparative biology

دوره 48 4  شماره 

صفحات  -

تاریخ انتشار 2008